This book generalises the classical theory of orthogonal polynomials on the complex unit circle, or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalised and treated in detail. The same topics are discussed for the different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modelling, lossless inverse scattering, and network synthesis. This theory has many applications in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and in electrical engineering.
The 1947 paper by John von Neumann & Herman Goldstine, 'Numerical Inverting of Matrices of High Order', is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book collects contributions by researchers who have lived through this evolution.
This book generalises the classical theory of orthogonal polynomials on the complex unit circle, or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalised and treated in detail. The same topics are discussed for the different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modelling, lossless inverse scattering, and network synthesis. This theory has many applications in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and in electrical engineering.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.