This text discusses sensitivity parametric analysis for the single tuned filter parameters and presents an optimization-based method for solving the allocation problem of the distributed generation units and capacitor banks in distribution systems. It also highlights the importance of artificial intelligence techniques such as water cycle algorithms in solving power quality problems such as over-voltage and harmonic distortion. Features: Presents a sensitivity parametric analysis for the single tuned filter parameters. Discusses optimization-based methods for solving the allocation problem of the distributed generation units and capacitor banks in distribution systems. Highlights the importance of artificial intelligence techniques (water cycle algorithm) for solving power quality problems such as over-voltage and harmonic distortion. Showcases a procedure for harmonic mitigation in active distribution systems using the single tuned harmonic filters. Helps in learning how to determine the optimal planning of the single tuned filters to mitigate the harmonic distortion in distorted systems. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, Power systems planning and analysis.
Modern Optimization Techniques for Smart Grids presents current research and methods for monitoring transmission systems and enhancing distribution system performance using optimization techniques considering the role of different single and multi-objective functions. The authors present in-depth information on integrated systems for smart transmission and distribution, including using smart meters such as phasor measurement units (PMUs), enhancing distribution system performance using the optimal placement of distributed generations (DGs) and/or capacitor banks, and optimal capacitor placement for power loss reduction and voltage profile improvement. The book will be a valuable reference for researchers, students, and engineers working in electrical power engineering and renewable energy systems. Predicts future development of hybrid power systems; Introduces enhanced optimization strategies; Includes MATLAB M-file codes.
​Enhancement of Grid-Connected Photovoltaic Systems Using Artificial Intelligence presents methods for monitoring transmission systems and enhancing distribution system performance using modern optimization techniques considering different multi-objective functions such as voltage loss sensitivity indexes, reducing total annual cost, and voltage deviation. The authors offer a comprehensive survey of distributed energy resources (DERs), explain the backward/forward sweep (BFS) power flow algorithm, and present simulation results on the optimal integration of photovoltaic-based distributed generators (PV-DG) and distribution static synchronous compensators (DSTATCOM) in different transmission and distribution systems. This book will be a valuable academic and industry resource for electrical engineers, students, and researchers working on optimization techniques, photovoltaic systems, energy engineering, and artificial intelligence.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.