This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share.In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers.The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.
I cannot define coincidence [in mathematics]. But 1 shall argue that coincidence can always be elevated or organized into a superstructure which perfonns a unification along the coincidental elements. The existence of a coincidence is strong evidence for the existence of a covering theory. " -Philip 1. Davis [Dav81] Alluding to the Thomas gyration, this book presents the Theory of gy rogroups and gyrovector spaces, taking the reader to the immensity of hyper bolic geometry that lies beyond the Einstein special theory of relativity. Soon after its introduction by Einstein in 1905 [Ein05], special relativity theory (as named by Einstein ten years later) became overshadowed by the ap pearance of general relativity. Subsequently, the exposition of special relativity followed the lines laid down by Minkowski, in which the role of hyperbolic ge ometry is not emphasized. This can doubtlessly be explained by the strangeness and unfamiliarity of hyperbolic geometry [Bar98]. The aim of this book is to reverse the trend of neglecting the role of hy perbolic geometry in the special theory of relativity, initiated by Minkowski, by emphasizing the central role that hyperbolic geometry plays in the theory.
The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author’s gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation language of Einstein described in this book plays a universal computational role, which extends far beyond the domain of special relativity. This book will encourage researchers to use the author’s novel techniques to formulate their own results. The book provides new mathematical tools, such as hyperbolic simplexes, for the study of hyperbolic geometry in n dimensions. It also presents a new look at Einstein’s special relativity theory.
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author’s gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation language of Einstein described in this book plays a universal computational role, which extends far beyond the domain of special relativity. This book will encourage researchers to use the author’s novel techniques to formulate their own results. The book provides new mathematical tools, such as hyperbolic simplexes, for the study of hyperbolic geometry in n dimensions. It also presents a new look at Einstein’s special relativity theory.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.