Disorders related to the intervertebral disc (IVD) are common causes of morbidity and of severe life quality deterioration. IVD degeneration, although in many cases asymptomatic, is often the origin of painful neck and back diseases. In Western societies IVD related pain and disability account for enormous health care costs as a result of work absenteeism and thus lost production, disability benefits, medical and insurance expenses. Although only a small percentage of patients with disc disorders finally will undergo surgery, spinal surgery has been one of the fastest growing disciplines in the musculoskeletal field in recent years. Nevertheless, current treatment options are still a matter of controversial discussion. In particular, they hardly can restore normal spine biomechanics and prevent degeneration of adjacent tissues. While degeneration affects all areas of the IVD, the most constant and noticeable changes occur in the gel-like central part, the nucleus pulposus (NP). Recent emphasis has therefore been put in biological ways to regenerate the NP; however, there are a number of obstacles to overcome, considering the exceptional biological and biomechanical environment of this tissue. Different biological approaches such as molecular, gene, and cell based therapies have been investigated and have shown promising results in both in vitro and in vivo studies. Nonetheless, considerable hurdles still exist in their application for IVD regeneration in human patients. The choice of the cells and the choice of the cell carrier suitable for implantation pose major challenges for research and development activities. This lecture recapitulates the basics of IVD structure, function, and degeneration mechanisms. The first part reviews the recent progress in the field of disc and stem cell based regenerative approaches. In the second part, most appropriate biomaterials that have been evaluated as cell or molecule carrier to cope with degenerative disc disease are outlined. The potential and limitations of cell- and biomaterial-based treatment strategies and perspectives for future clinical applications are discussed. Table of Contents: Cell Therapy for Nucleus Pulposus Regeneration / Recent Advances in Biomaterial Based Tissue Engineering for Intervertebral Disc Regeneration
Did Osho truly die a natural death? Or were there other forces at play? 27 years after Osho's death, investigative journalist Abhay Vaidya reveals shocking details of the case that he tracked for nearly three decades. Osho's death on 19th January, 1990 triggered intense factional fights and intrigue among his closest followers for the control of the funds, intellectual properties and other lucrative assets of the Movement. Who Killed Osho? not only captures the history of the Movement but is also the definitive account to date of Osho’s death and that of his soulmate, Nirvano. Throwing fresh light on the controversial circumstances of their deaths, this book makes a case for investigations into the affairs of the Osho trusts as they exist today.
Political Representation in India: Ideas and Contestations, 1908–1952 maps extensive and wide-ranging debates, marked by contestations and strident demands on political representation in colonial India. Further, it explores these themes during the Constitution-framing process. These debates, previously overlooked, are significant for they helped shape the institutional structures of political representation in the form of the electoral system of Indian democracy. It assists in providing an answer to why and how independent India came to adopt its current electoral system characterised by the First-Past-The-Post (FPTP) system. It also analyses how and why the alternatives to FPTP, primarily any form of proportional representation, were rejected. Moreover, the book simultaneously provides a rich and detailed description of how communities, and religious, caste and ethnic categories came to be defined as their demands for political representation were conceded. It also briefly deals with the issue of delimitation of constituencies during the colonial and the immediate post-independence period.
This is introductory book for researchers, scientists and students in the area of organic and inorganic composite materials. This book has addressed timely the innovative topic "chalcogenide-multiwalled carbon nanotubes and chalcogenide-bilayer graphene" composite materials under a glassy regime. This book will give a clear idea on the concepts of the newly established composite materials area, by providing interpretations of inside physio-chemical mechanism. The remarkable landmark innovations related to this newly introduced research field are included in this book. Additionally, the possible futuristic applications in the area of nanoelectronics, optoelectronics, biomedical etc are also addressed.
In these rapturous poems, Abhay K. catches the allure and mystique of Kathmandu, its maze of medieval streets, thronged bazaars, twilit courtyards, the aromas of its ancient alleyways, the drift of incense from its crumbling temples, and the raucous chant of its life. He is the all-seeing eye, the seer who brings to light a city and its people with a rare immediacy of speech and a boundless imaginative empathy.
Disorders related to the intervertebral disc (IVD) are common causes of morbidity and of severe life quality deterioration. IVD degeneration, although in many cases asymptomatic, is often the origin of painful neck and back diseases. In Western societies IVD related pain and disability account for enormous health care costs as a result of work absenteeism and thus lost production, disability benefits, medical and insurance expenses. Although only a small percentage of patients with disc disorders finally will undergo surgery, spinal surgery has been one of the fastest growing disciplines in the musculoskeletal field in recent years. Nevertheless, current treatment options are still a matter of controversial discussion. In particular, they hardly can restore normal spine biomechanics and prevent degeneration of adjacent tissues. While degeneration affects all areas of the IVD, the most constant and noticeable changes occur in the gel-like central part, the nucleus pulposus (NP). Recent emphasis has therefore been put in biological ways to regenerate the NP; however, there are a number of obstacles to overcome, considering the exceptional biological and biomechanical environment of this tissue. Different biological approaches such as molecular, gene, and cell based therapies have been investigated and have shown promising results in both in vitro and in vivo studies. Nonetheless, considerable hurdles still exist in their application for IVD regeneration in human patients. The choice of the cells and the choice of the cell carrier suitable for implantation pose major challenges for research and development activities. This lecture recapitulates the basics of IVD structure, function, and degeneration mechanisms. The first part reviews the recent progress in the field of disc and stem cell based regenerative approaches. In the second part, most appropriate biomaterials that have been evaluated as cell or molecule carrier to cope with degenerative disc disease are outlined. The potential and limitations of cell- and biomaterial-based treatment strategies and perspectives for future clinical applications are discussed. Table of Contents: Cell Therapy for Nucleus Pulposus Regeneration / Recent Advances in Biomaterial Based Tissue Engineering for Intervertebral Disc Regeneration
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.