Hendrik Antoon Lorentz was one of the greatest physicists and mathematicians the Netherlands has ever known. Einstein called him "a living work of art, a perfect personality". During his funeral in 1928, the entire Dutch nation mourned. The national telegraph service was suspended for three minutes and his passing was national and international front-page news. The cream of international science, an impressive list of dignitaries, including the Prince Consort, and thousands of ordinary people turned out to see Lorentz being carried to his last resting place. This biography describes the life of Lorentz, from his early childhood, as the son of a market gardener in the provincial town of Arnhem, to his death, as a towering figure in physics and in international scientific cooperation and as a trailblazer for Einstein's relativity theory. A number of chapters shed light on his unique place in science, the importance of his ideas, his international conciliatory and scientific activities after World War One, his close friendship with Albert Einstein, and his important role as Einstein's teacher and intellectual critic. By making use of recently discovered family correspondence, the authors were able to show that there lies a true human being behind Lorentz's façade of perfection. One chapter is devoted to Lorentz's wife Aletta, a woman in her own right, whose progressive feminist ideas were of considerable influence on those of her husband. Two separate chapters focus on his most important scientific achievements, in terms accessible to a general audience.
Outgrowth of 6th Int'l Conference on the History of General Relativity, held in Amsterdam on June 26-29, 2002 Contributions from notable experts offer both new and historical insights on gravitation, general relativity, cosmology, unified field theory, and the history of science Topics run gamet from detailed mathematical discussions to more personal recollections of relativity as seen through the eyes of the public and renowned relativists
This complete introduction to the use of modern ray tracing techniques in plasma physics describes the powerful mathematical methods generally applicable to vector wave equations in non-uniform media, and clearly demonstrates the application of these methods to simplify and solve important problems in plasma wave theory. Key analytical concepts are carefully introduced as needed, encouraging the development of a visual intuition for the underlying methodology, with more advanced mathematical concepts succinctly explained in the appendices, and supporting Matlab and Raycon code available online. Covering variational principles, covariant formulations, caustics, tunnelling, mode conversion, weak dissipation, wave emission from coherent sources, incoherent wave fields, and collective wave absorption and emission, all within an accessible framework using standard plasma physics notation, this is an invaluable resource for graduate students and researchers in plasma physics.
The purpose and organisation of this book are described in the preface to the first edition (1988). In preparing this edition minor changes have been made, par ticularly to Chap. 1 (Vol. 1) to keep it reasonably current, and to upgrade the treatment of specific techniques, particularly in Chaps. 12-14 and 16-18. How ever, the rest of the book (Vols. 1 and 2) has required only minor modification to clarify the presentation and to modify or replace individual problems to make them more effective. The answers to the problems are available in Solutions Manual jor Computational Techniques jor Fluid Dynamics by K. Srinivas and C. A. J. Fletcher, published by Springer-Verlag, Heidelberg, 1991. The computer programs have also been reviewed and tidied up. These are available on an IBM compatible floppy disc direct from the author. I would like to take this opportunity to thank the many readers for their usually generous comments about the first edition and particularly those readers who went to the trouble of drawing specific errors to my attention. In this revised edi tion considerable effort has been made to remove a number of minor errors that had found their way into the original. I express the hope that no errors remain but welcome communication that will help me improve future editions. In preparing this revised edition I have received considerable help from Dr. K.
In the spring of 1971, Reinier Tirnrnan visited the University of Delaware during which time he gave a series of lectures on water waves from which these notes grew. Those of us privi leged to be present during that time will never forget the experience. Rein Tirnrnan is not easily forgotten. His seemingly inexhaustible energy completely overwhelmed us. Who could forget the numbing effect of a succession of long wine filled evenings of lively conversation on literature, politics, education, you name it, followed early the next day by the appearance of the apparently totally refreshed red haired giant eager to discuss our mathematical problems with keen insight en remarkable understanding, ready to lecture on fluid mechanics or optimal control theory or a host of other subjects and ready to work into the evening until the cycle repeated. He thought faster, he knew more, he drank more and he slept less than any of us mortals and he literally wore us out. What a rare privilege indeed to have participated in this intellectual orgy. Tirnrnan's lively interest in almost every thing coupled with his buoyant enthusiasm and infectious op timism epitomized his approach to life. No delicate nibbling at the fringes, he wanted every morsel of every course. In these times of narrow specialization truly renaissance figures are, if not extinct, at least a highly endangered species. But Tirnrnan was one of that rare breed.
This text covers a broad spectrum of topics pertinent to the management of incinerator residues. Background information includes a history of incineration, and the influence of municipal waste composition, incinerator type air pollution control technologies on residue quality. Physical, chemical and leaching characteristics for the various ash streams are described, along with recommended sampling and evaluation methodologies. Residue handling and management options, including, treatment utilisation and disposal are also discussed in detail.
As indicated in Vol. 1, the purpose of this two-volume textbook is to pro vide students of engineering, science and applied mathematics with the spe cific techniques, and the framework to develop skill in using them, that have proven effective in the various branches of computational fluid dy namics Volume 1 describes both fundamental and general techniques that are relevant to all branches of fluid flow. This volume contains specific tech niques applicable to the different categories of engineering flow behaviour, many of which are also appropriate to convective heat transfer. The contents of Vol. 2 are suitable for specialised graduate courses in the engineering computational fluid dynamics (CFD) area and are also aimed at the established research worker or practitioner who has already gained some fundamental CFD background. It is assumed that the reader is famil iar with the contents of Vol. 1. The contents of Vol. 2 are arranged in the following way: Chapter 11 de velops and discusses the equations governing fluid flow and introduces the simpler flow categories for which specific computational techniques are considered in Chaps. 14-18. Most practical problems involve computational domain boundaries that do not conveniently coincide with coordinate lines. Consequently, in Chap. 12 the governing equations are expressed in generalised curvilinear coordinates for use in arbitrary computational domains. The corresponding problem of generating an interior grid is considered in Chap. 13.
Dynamics of Fixed Marine Structures, Third Edition proves guidance on the dynamic design of fixed structures subject to wave and current action. The text is an update of the ""UR8"" design guide ""Dynamics of Marine Structures"" with discussion of foundations, wind turbulence, offshore installations, earthquakes, and strength and fatigue. The book employs analytical methods of static and dynamic structural analysis techniques, particularly the statistical and spectral methods when applied to loading and in the calculating dynamic responses. The statistical methods are explained when used to wave, wind, and earthquake calculations, together with the problems encountered in actual applications. Of importance to fixed offshore platforms are the soil properties and foundation covering soil behavior, site investigation, testing, seabed stability, gravity structures, and the use of single piles. Methods of forecasting, measuring, and modeling of waves and currents are also presented in offshore structure construction. Basic hydrodynamics is explained in understanding wave theory, and some description is given to forecasting of environmental conditions that will affect the structures. The effects of vortex-induced vibrations on the structure are explained, and the three methods that can prevent vortex-induced oscillations are given. Wind turbulence or wind loads are analyzed against short natural period or long natural periods of structures. The transportation of offshore platforms, installation, and pile driving, including examples of the applications found in the book, are given as well. The guide is helpful for offshore engineers, designers of inshore jetties, clients needing design and analysis work, specialists related to offshore structural engineering, and students in offshore engineering.
In this book an introduction is given to aspects of water waves that play a role in ship hydrodynamics and offshore engineering. At first the equations and linearized boundary conditions are derived describing the non-viscous free surface water waves, with special attention to the combination of steady and non-steady flow fields. Then some simple kinds of free wave solutions are derived, such as plane waves and cylindrical waves. For several situations, steady and unsteady, the source singularity function is derived. These functions play a role in numerical codes used to describe the motion of ships and offshore structures. These codes are mostly based on a boundary integral formulation; therefore we give an introduction to these methods. It is shown how first order ship motions can be determined. In offshore engineering the second order wave drift motions play an important role. An introduction to this phenomenon is given and the effects which have to be taken into account are explained by means of a simple example where we can determine nearly all the aspects analytically. An interesting example that is worked out is the motion of very large floating flexible platforms with finite draft. Finally an introduction to the theory of shallow water non-linear dispersive waves is presented, and shallow water ship hydrodynamics, that plays a role in coastal areas and channels is treated. Here attention is paid to the interaction between passing ships in restricted water. In the appendix a short introduction to some of the mathematical tools is given.
Presents advances in the field of hydrocracking. The volume includes catalytic materials, reaction mechanisms and pathways, as well as hydrocracking processes and applications. It discusses hydrocracking processes and hydrocracking technology in catalytic dewaxing, resid upgrading, and fluid catalytic cracking feedstock improvement
Hendrik Antoon Lorentz was one of the greatest physicists and mathematicians the Netherlands has ever known. Einstein called him "a living work of art, a perfect personality". During his funeral in 1928, the entire Dutch nation mourned. The national telegraph service was suspended for three minutes and his passing was national and international front-page news. The cream of international science, an impressive list of dignitaries, including the Prince Consort, and thousands of ordinary people turned out to see Lorentz being carried to his last resting place. This biography describes the life of Lorentz, from his early childhood, as the son of a market gardener in the provincial town of Arnhem, to his death, as a towering figure in physics and in international scientific cooperation and as a trailblazer for Einstein's relativity theory. A number of chapters shed light on his unique place in science, the importance of his ideas, his international conciliatory and scientific activities after World War One, his close friendship with Albert Einstein, and his important role as Einstein's teacher and intellectual critic. By making use of recently discovered family correspondence, the authors were able to show that there lies a true human being behind Lorentz's façade of perfection. One chapter is devoted to Lorentz's wife Aletta, a woman in her own right, whose progressive feminist ideas were of considerable influence on those of her husband. Two separate chapters focus on his most important scientific achievements, in terms accessible to a general audience.
Outgrowth of 6th Int'l Conference on the History of General Relativity, held in Amsterdam on June 26-29, 2002 Contributions from notable experts offer both new and historical insights on gravitation, general relativity, cosmology, unified field theory, and the history of science Topics run gamet from detailed mathematical discussions to more personal recollections of relativity as seen through the eyes of the public and renowned relativists
Among the considerations of the two dozen papers are the reception and development of Einstein's theory of general relativity in various institutions around the world; conceptual issues of the theory, especially themes, concepts, and principles associated with his theory of gravity; a number of tech
›Baby, ich bin nicht dein Ritter, der dich auf einem weißen Pferd rettet.‹ Heiß, explosiv und gutaussehend sind nur ein paar Eigenschaften, die man über Paxton Royce sagen kann. Und doch ... Lean ist fest entschlossen, mehr über diesen geheimnisvollen Kerl herauszufinden. Dass sie das in Schwierigkeiten bringt, erkennt sie, als es zu spät ist. Was als anfängliche Recherche beginnt, wird zu einem gefährlichen Spiel. Und es stellt sich die Frage: Wie viel bist du bereit zu geben, wenn alles auf einer Karte steht, sogar die Menschen, die man am meisten liebt?
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.