This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Is it possible to apply a network model to composites with conical inclusions? How does the energy pass through contrast composites? Devoted to the analysis of transport problems for systems of densely packed, high-contrast composite materials, Capacity and Transport in Contrast Composite Structures: Asymptotic Analysis and Applications answers questions such as these and presents new and modified asymptotic methods for real-world applications in composite materials development. A mathematical discussion of phenomena related to natural sciences and engineering, this book covers historical developments and new progress in mathematical calculations, computer techniques, finite element computer programs, and presentation of results of numerical computations. The "transport problem"—which is described with scalar linear elliptic equations—implies problems of thermoconductivity, diffusion, and electrostatics. To address this "problem," the authors cover asymptotic analysis of partial differential equations, material science, and the analysis of effective properties of electroceramics. Providing numerical calculations of modern composite materials that take into account nonlinear effects, the book also: Presents results of numerical analysis, demonstrating specific properties of distributions of local fields in high-contrast composite structures and systems of closely placed bodies Assesses whether total flux, energy, and capacity exhaust characteristics of the original continuum model Illustrates the expansion of the method for systems of bodies to highly filled contrast composites This text addresses the problem of loss of high-contrast composites, as well as transport and elastic properties of thin layers that cover or join solid bodies. The material presented will be particularly useful for applied mathematicians interested in new methods, and engineers dealing with prospective materials and design methods.
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.