Molecular Crystals and Molecules deals with some of the problems of molecular crystallography and certain aspects of molecular structure. This book is composed of eight chapters that specifically cover the significant progress of conformational research. The opening chapter describes the structure of crystals considering the close-packing principle, disorder elements, and binary systems. The next two chapters examine the calculation of crystal lattice energy and dynamics. These topics are followed by discussions on the molecular movement, structural, and thermodynamic aspects of crystals. The final chapters look into the parameters for conformational calculations of molecules, macromolecules, and biopolymers. This book will be of great value to physical chemists and researchers who are interested in crystal and molecular structure.
Polyamic Acids and Polyimides surveys significant developments in basic research in the chemistry and physics of polyamic acids and polyimides over the last several years. Traditional and new topics are discussed, including catalytical imidization, chemical reactions at thermal treatment, quantum-chemical study of synthesis and structure, properties of isolated molecules, and supermolecular and crystalline structures. The book will be an excellent reference for researchers, practitioners, and graduate students working with polyimides and related heat-resistant polymers and materials.
Computer simulation techniques are now having a major impact on almost all areas of the physical and biological sciences. This book concentrates on the application of these methods to inorganic materials, including topical and industrially relevant systems including zeolites and high Tc superconductors. The central theme of the book is the use of modern simulation techniques as a structural tool in solid state science. Computer Modelling in Inorganic Crystallography describes the current range of techniques used in modeling crystal structures, and strong emphasis is given to the use of modeling in predicting new crystal structures and refining partially known structures. It also reviews new opportunities being opened up by electronic structure calculation and explains the ways in which these techniques are illuminating our knowledge of bonding in solids. - Includes a thorough review of the technical basis of relevant contemporary methodologies including minimization, Monte-Carlo, molecular dynamics, simulated annealing methods, and electronic structure methods - Highlights applications to amorphous and crystalline solids - Surveys simulations of surface and defect properties of solids - Discusses applications to molecular and inorganic solids
This book is based on the results of many years of experimental work by the author and his colleagues, dealing with the electronic properties of organic crystals. E. Silinsh has played a leading role in pOinting out the importance of the polarization energy by an excess carrier, in determining not only the character of the carrier mobility in organic crystals, but in determining the band gap and the nature of the all-important trapping site in these crystals. The one-electron model of electronic conductivity that has been so successful in dealing with inorganic semiconductors is singular ly unsuccessful in rationalizing the unusual physical properties of organic crystals. A many-body theory is required, and the experimental manifestation of this is the central role played by the crystal polarization enerqies in transferring the results obtained with the isolated molecule, to the solid. The careful studies of E. Silinsh in this field have shown tn detail how this polarization energy develops around the excess carrier (and also the hole-electron pair) sitting on a molecular site in the crystal. As with all insulators, trapping sites playa dominant role in reducing the magnitude of ~he current that can theoretically pass through the organic crystal. It is usually the case that these trapping sites are energetically distributed within the forbidden band of the crystal. For many years, an exponential distribution has shown itself to be useful and reasonably correct: However,' E.
Gettering Defects in Semiconductors fulfills three basic purposes: – to systematize the experience and research in exploiting various gettering techniques in microelectronics and nanoelectronics; – to identify new directions in research, particularly to enhance the perspective of professionals and young researchers and specialists; – to fill a gap in the contemporary literature on the underlying semiconductor-material theory. The authors address not only well-established gettering techniques but also describe contemporary trends in gettering technologies from an international perspective. The types and properties of structural defects in semiconductors, their generating and their transforming mechanisms during fabrication are described. The primary emphasis is placed on classifying and describing specific gettering techniques, their specificity arising from both their position in a general technological process and the regimes of their application. This book addresses both engineers and material scientists interested in semiconducting materials theory and also undergraduate and graduate students in solid–state microelectronics and nanoelectronics. A comprehensive list of references provides readers with direction for further reading.
The fascinating autobiographical reflections of Nobel Prizewinner George Olah How did a young man who grew up in Hungary between the two WorldWars go from cleaning rubble and moving pianos at the end of WorldWar II in the Budapest Opera House to winning the Nobel Prize inChemistry? George Olah takes us on a remarkable journey fromBudapest to Cleveland to Los Angeles-with a stopover in Stockholm,of course. An innovative scientist, George Olah is truly one of akind, whose amazing research into extremely strong acids and theirnew chemistry yielded what is now commonly known as superacidic"magic acid chemistry." A Life of Magic Chemistry is an intimate look atthe many journeys that George Olah has traveled-from his earlyresearch and teaching in Hungary, to his move to North Americawhere, during his years in industry, he continued his study of theelusive cations of carbon, to his return to academia in Cleveland,and, finally, his move to Los Angeles, where he built the LokerHydrocarbon Research Institute to find new solutions to the graveproblem of the world's diminishing natural oil and gas resourcesand to mitigate global warming by recycling carbon dioxide intohydrocarbon fuels and products. Professor Olah invites the readerto enjoy the story of his remarkable path-marked by hard work,imagination, and never-ending quests for discovery-which eventuallyled to the Nobel Prize. Intertwining his research and teaching witha unique personal writing style truly makes A Life of MagicChemistry an engaging read. His autobiography not onlytouches on his exhilarating life and pursuit for new chemistry butalso reflects on the broader meaning of science in our perpetualsearch for understanding and knowledge.
A biography of Lev Landau, one of the greatest Soviet theoretical physicists, whose career was cut short by a catastrophic car accident in 1962 and who was still only sixty when he died six years later. He won the Nobel Prize 'for pioneering work on the theory of the condensed state of matter, particularly liquid helium'. But the book shows that Landau's characterisation of himself as 'one of the last of the universal men of theoretical physics' was fully justified. Clearly and concisely it describes his achievements in all areas of theoretical physics from hydrodynamics to the quantum theory of fields. Attention is also paid to his genius as a teacher and mentor of young scientists, and throughout the book the true humanity of the man is evident
The quantum theory of magnetism is a well-developed part of contemporary solid-state physics. The basic concepts of this theory can be used to describe such important effects as ferromagnetic ordering oflocalized magnetic moments in crystals and ferromagnetism of metals produced by essentially delocalized electrons, as well as various types of mutual orientation of atomic magnetic moments in solids possessing different crystal lattices and compositions. In recent years,the spin-fluctuational approach has been developed, which can overcome some contradictions between "localized" and "itinerant" models in the quantum mechanics of magnetic crystals. These are only some of the principal achievements of quantum magnetic theory. Almost all of the known magnetic properties of solids can be qualitat ively explained on the basis of its concepts. Further developments should open up the possibility of reliable quantitative description of magnetic properties of solids. Unfortunately, such calculations based on model concepts appear to be very complicated and, quite often, not definite enough. The rather small number of parameters of qualitative models are usually not able to take into account the very different types of magnetic interactions that appear in crystals. Further development of magnetic theory requires quantitative information on electronic wave function in the crystal considered. This can be proved by electronic band structure and cluster calculations. In many cases the latter can be a starting point for quantitative calculations of parameters used in magnetic theory.
Molecular bioelectronics is a field in strong evolution at the frontier of life and materials sciences. The term is utilized in a broad context to emphasize a unique blend of electronics and biotechnology which is seen as the best way to achieve many objectives of industrial and scientific relevance, including biomolecular engineering, bioelectronic devices, materials and sensors capable of optimal hardware efficiency and intelligence and molecular miniaturization.
The history of applications of space group theory to solid state physics goes back more than five decades. The periodicity of the lattice and the definition of a k-space were the corner-stones of this application. Prof. Volker Heine in Vol. 35 of Solid State Physics (1980) noted that, even in perfect crystals, where k-space methods are appropriate, the local properties (such as the charge densi ty, bond order, etc.) are defined by the local environment of one atom. Natural ly, "k-space methods" are not appropriate for crystals with point defects, sur faces and interfaces, or for amorphous materials. In such cases the real-space approach favored by chemists to describe molecules has turned out to be very useful. To span the gulf between the k-space and real space methods it is helpful to recall that atoms in crystalline solids possess a site symmetry defined by the symmetry of the local environment of the atom occupying the site. The site symmetry concept is familiar to crystallographers and commonly used by them in the description of crystalline structures. However, in the application of group theory to solid state physics problems, the site symmetry approach has been used only for the last ten to fifteen years. In our book Methods oj Group Theory in the Quantum Chemistry oj Solids published in Russian in 1987 by Leningrad University Press we gave the first results of this application to the theory of electronic structure of crystals.
Hydrogen bonds are weak attractions, with a binding strength less than one-tenth that of a normal covalent bond. However, hydrogen bonds are of extraordinary importance; without them all wooden structures would collapse, cement would crumble, oceans would vaporize, and all living things would disintegrate into random dispersions of inert matter. Hydrogen Bonding in Biological Structures is informative and eminently usable. It is, in a sense, a Rosetta stone that unlocks a wealth of information from the language of crystallography and makes it accessible to all scientists. (From a book review of Kenneth M. Harmon, Science 1992)
Ms. A is a 33-year-old married female who presents to the outpatient clinic with complaints of feeling "stressed" for the last year. She describes herself as "easygoing and carefree" until last year when she noticed she was feeling uneasy and was increasingly worrying about household chores, running errands and her finances after seeing how the economy has been affected. She has a stable job at an accounting firm, at which she excels, and recently received a promotion. She expresses being afraid that "something awful" will happen to her parents, although she explains they do not suffer from any life-threatening illnesses and live in a safe neighborhood"--
This text presents an overview of the electronic transport phenomena including high-Tc superconductivity and colossal magnetoresistance. It concisely reviews all the conducting oxides, discussing in detail nine representative oxides. More than 1200 references serve as a convenient guidepost to proceed into this vast research field.
Molecular Crystals and Molecules deals with some of the problems of molecular crystallography and certain aspects of molecular structure. This book is composed of eight chapters that specifically cover the significant progress of conformational research. The opening chapter describes the structure of crystals considering the close-packing principle, disorder elements, and binary systems. The next two chapters examine the calculation of crystal lattice energy and dynamics. These topics are followed by discussions on the molecular movement, structural, and thermodynamic aspects of crystals. The final chapters look into the parameters for conformational calculations of molecules, macromolecules, and biopolymers. This book will be of great value to physical chemists and researchers who are interested in crystal and molecular structure.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.